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Our model of human mind and
behavior science



Unveiling the Mechanisms and Fundamentals Behind
the Human Mind and its disorders

René Descartes, 1640

Mind and brain (body) has differential properties,
fundamentals and outcomes




Unveiling the Mechanisms and Fundamentals Behind
the Human Mind and its disorders (our approach)

Studying brains
structures
and functions
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Studying brain and
body
Biology interactions
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Studying brain and human behaviors in situated
manner:
Under complex interactions

Santamaria-Garcia H. Computational whole-body-exposome models for global precision brain health. Nature Com. 2025



Human mind depends on movement and interactions with space

Human mind experiences are shaped by
Interactions with context

-
Thorncrown Chapel. Fay Jones Spaces affordances shape mental
"a place to rest, reflect, and refresh ” Experiences and behaviors

The End of Sitting. RAAAF [Rietveld Architecture-Art Affordances] & Barbara Visser



Human mind is also sculpted by cummulative exposure to different
physical and social environments
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Santamaria-Garcia et al, 2024. Allostatic Interoceptive Overload Across Psychiatric and Neurological Conditions.
Biological Psychiatry



Human mind is also sculpted by cultures

Santamaria-Garcia H. Functional neurological disorders as a pivot disorder for understanding bayesian psychiatry.
Submitted 2025



Brain-body-context-culture interactions will offer better options
for understanding human mind (subjectivity) complexities

Santamaria-Garcia H. Functional neurological disorders as a pivot disorder for understanding bayesian psychiatry.
Submitted 2025



How do individual and social factors relate to
violent behavior?

—



Factors associated with violence behavior in ex-members of armed groups in Colombia
The Hobbes—Rousseau dilemma of human nature
Hobbes: humans are naturally selfish and violent; they need a strong state.
Rousseau: humans are basically good, and it is society that corrupts them.

A Pipeline
A Deep learning performance of the Global Violence

Deep learming
(PPV: 162 features)

1. Training process 2. Performace on test partition
0.6 10

8 Sample selection

‘ l 1 | l
N\ L2 20 2 2 2 7

Total Sample (n=26349) [ Global violence I

— Selected set of features
=== Full set of features

Accuracy
(=}
o

€ Deep learning (PPV: 162 features)
Input layer Hidden layer Qutput layer Training process

B ®» B B B o

— Selected set of features
=== Full set of features

| i 0.8
B ® ® 9 9 =11 0 500 1,000 1500 2,000 2,500 3,000 0 500 1,000 1500 2000 2500 3,000
i <4 i ! ‘ g Training iterations Training iterations
Bi% % % % ' o 8 Machine learning features selection of the Global Violence
B oow @ vwn — wn B o N ..
1. Performace over PFE (least) on validation fold 2. Stability assessment
D Machine learning features selection (PPV/n: 162 features) 1.0 160
1. Data partition 2. Elimination process (each fold) 3. Selection (over folds)
e T sy - 140
J [ [ 18] —DJ ] — ’ 120
A el
: | 000 -— e 208 < 100
: | 000 -— LA B 3 S
_‘ $ ~ ) = g 60
| 1 $os O
mpienen £ @ - .‘ "0 < W ¢ 50
40 )
4, Performance {on test data) S. Feature importance / positi 6. Stabili ly assessment 0.6 — Mean — Median
b s == SD 20 == Range
‘@ @ -ﬂ..’ 05 7 S 1
~ Q@ - . 1 5 10 50 100 20 40 60 80 100 120 140 160
i I I "00® - Number of features (log) Sorted features
@ , ,

2 €

Santamaria Garcia et al Patterns Cell 2020

Critical finding: Social factors are more relevant predictors than psychological factors in predicting violence
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Factors associated with violence behavior in ex-members of armed groups in Colombia

The Hobbes—Rousseau dilemma of human nature
Hobbes: humans are naturally selfish and violent; they need a strong state.

3. Importance distribution over each

Rousseau: humans are basically good, and it is society that corrupts them.

NUDE Ul iealuied \IUF‘J

feature on whole train partition

— |mportance base
mm  Selected features

n Contextual Predictors

B. So

cial Networ

k Adversities
\ t

C. Social Vuinerability

160

Accuracy

o
~

D0I1eq reawures
4. Performace on test data
over RFE (most)

[
o

o
[te)

o
oo

o
o

o
wn

1 5 10 50 100

Number of features removed (log)

on, F. Normalization of Violence

rtance

Impo

.04

Number of features (log)

3. Feature selection for Consequentialist DoV

134
135
B, 109, 13 13
@ e 46 141
= 123, ».r"‘
5 1
= l-h\ _;,o\
( 144 ,:45‘
Ll I 1 'l ﬂlm

Predictors' subfactor

_ 5. Feature selection for Rohlnmry DOV

4

=-_¢< ~,
- 4\;

Predictors' subfactors

! 8 Notwork Adv t c
G. Mental Sy

DoV

4. Feature selection for Appetitive DoV

/(
B! L
W
g ) &
- o 2 L 23
Q . % 147,
a '(i (” 21) 160,
c I\ L 131 \
= oo [t B ) 123 ] 135|148
| | J
o D RN T WEmeRttY B § '
textud redictc ubfactor v
6. mem sol(*(non for Impulslvo [)OV
1 ' 12
nt Predictors’ subfactor:
1§

Santamaria Garcia et al Patterns Cell 2020

Critical finding: Social factors are more relevant predictors than psychological factors in predicting violence



Multimodal exposomes and aging



Methods
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Results

Is it possible to predict chronological age by using biological (age, perceptual
skills), behavioral (lifestyles) and social factors (education, SES)
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Results

Bio-behavioral clocks predict cognition, functionality, and mental
wellbeing cross-sectionally and prospectively.

a. Cross-sectional odd ratio and attributable risk
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Results

Biobehavioral clocks are affected by income

factors of countries.

€ BBAGs and region
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Societal values, mind life and aging



Societal values and mental wellbeing and
aging

Societal values (notions of collective wellbeing, social cohesion, perceived agency, and
institutional trust) organize community life and have been linked to: better health profiles,
lower mortality, reduced physiological stress and better coping, stronger social networks
and healthier behaviors, longer life expectancy, and more equitable health systems.

But could they also impact individual and population-level aging processes?

Santamaria Garcia et al Social values related inform healthy and accelerated aging. Under preparation. 2025



Methods.

« Assessment of national aging survyes of 63.592
adults from Europa and Latin America to predict bio-

behavioral aging clocks.

» Assessment of world values survey to predict
country-level societal values (40 countries).
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Results

Female age prediction
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Aging acceleration determined by bio-behavioral clocks was impacted by
societal values indexes across 40 countries.
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Results

Countries with more possitive societal values exhibited delayed age acceleration with regional
differences.
Critically, no association of agency, institutional values and age acceleration in East Europe was
detected (possibly due to sociocultural and democratic factors).
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Social factors at individual and
country-level impacts brain
acceleration processes.
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Brain clocks across different populations affected by diversity and disparities in
aging and dementia
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Dataset characterization (N = 5,306)
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Brain clocks across different populations affected by exposomes
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Critical finding: Different exposomes impact accelerated brain age across diverse populations in aging and dementia
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